

Welcome to fornax’s documentation!

	Guide
	Subgraph Matching

	Example Problems

	Goals

	Architecture

	Creating a Dataset
	Download

	Loading with Pandas

	Analysis

	Export to CSV

	Tutorial
	Introduction

	Label similarity

	Creating a target graph

	Creating a query graph

	Search

	Visualise

	API
	Introduction

	Connection API

	Graph API

	Query API

	Modules
	Submodules

Indices and tables

	Index

	Module Index

	Search Page

Guide

Fornax is an open source library to perform fuzzy subgraph matching
between labelled undirected graphs based on
NeMa: Fast Graph Search with Label Similarity. [http://www.vldb.org/pvldb/vol6/p181-khan.pdf]

Subgraph Matching

A subgraph is any collection of node and edges that form some subset of a graph.
For example in the image below the graph on the left is isomorphic to the green nodes
in the graph on the right, hence they form a subgraph.

[image: _images/subgraph.png]
If we refer to the graph on the left as the query graph
and the graph on the right as the target graph
subgraph matching is the process of finding the query graph
in the target graph such that the node labels and edges are strictly the same.

Fornax will kind the n most similar subgraphs in a target graph based on a user
specified query graph using a user specified label similarity function.

Fornax will not only find exact subgraph isomorphisms
but the n most similar subgraphs even if they are not exact isomorphisms of the query graph.
Hence, fornax can be used for fuzzy subgraph matching.

For example, Fornax can be used to find subgraphs where labels are similar, yet different,
based on a user specified definition.
Additionally neighbours in the query graph may be absent, or are neighbours of neighbours in the
target graph.

Example Problems

Common fuzzy subgraph matching problems include:

	searching knowledge graphs

	mining social networks

	searching geospation data as a graph

	searching text as a graph

Goals

fornax was written with three primary goals in mind

	to demonstrate process and provide ease of use over performance

	to be flexible and accomidate the users notions of similarity

	to scale to large target graphs of millions of nodes and edges

Architecture

In order to support large graphs and persist them
between python interpreter sessions fornax stores all data
in a database.

To facilite ease of use fornax can use sqlite or postgresql
as a back end.
For more details see the API Introduction.

[image: _images/fornax.png]

Creating a Dataset

[1]:

from SPARQLWrapper import SPARQLWrapper, JSON
import pandas as pd
import hashlib

To install the use the dependencies for this notebook:

conda env create -f environment.yml
source activate fornax_tutorial

To run this notebook from the project root:

cd docs/tutorial
jupyter-notebook

Download

For the duration of this tutorial we will be using the social network of Marvel Comicbook characters.

Nodes will represent

	characters

	aliases

	groups of characters

edges will represent relationships between the nodes.

For example Wolverine, Logan and X-Men are all nodes. There is an edge between Wolverine and Logan because Logan is an alternative name for Wolverine. There is an edge between Wolverine and X-Men because Wolverine is a member of X-Men. There is no direct relationship between Logan and X-Men so there is no edge between them.

SPARQL

Below is a SPARQL query which will return data in the following format (using ‘Wolverine’ as an example):

{
 "group": {
 "type": "uri",
 "value": "http://www.wikidata.org/entity/Q2690825"
 },
 "character": {
 "type": "uri",
 "value": "http://www.wikidata.org/entity/Q186422"
 },
 "birthName": {
 "xml:lang": "en",
 "type": "literal",
 "value": "James Howlett"
 },
 "characterLabel": {
 "xml:lang": "en",
 "type": "literal",
 "value": "Wolverine"
 },
 "groupLabel": {
 "xml:lang": "en",
 "type": "literal",
 "value": "Horsemen of Apocalypse"
 },
 "characterAltLabel": {
 "xml:lang": "en",
 "type": "literal",
 "value": "Logan, Weapon X, Jim Logan, Patch, James Howlett, Agent Ten, Experiment X, Weapon Ten"
 }
}

[2]:

sparql = SPARQLWrapper("https://query.wikidata.org/sparql")
sparql.setQuery("""
 SELECT ?character ?characterLabel ?group ?groupLabel ?birthName ?characterAltLabel
 WHERE {
 ?group wdt:P31 wd:Q14514600 ; # group of fictional characters
 wdt:P1080 wd:Q931597. # from Marvel universe
 ?character wdt:P463 ?group. # member of group
 optional{ ?character wdt:P1477 ?birthName. }
 SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en".}
 }
""")
sparql.setReturnFormat(JSON)
results = sparql.query().convert()

Loading with Pandas

We’ll be using pandas to do some data manipulation so lets put the result inside a pandas dataframe.

[3]:

load the results into a pandas DataFrame
records = []
for result in results["results"]["bindings"]:
 character_id = result['character']['value']
 group_id = result['group']['value']
 name = result['characterLabel']['value']
 group = result['groupLabel']['value']
 alt_names = None
 if 'characterAltLabel' in result:
 alt_names = result['characterAltLabel']['value']
 birth_name = None
 if 'birthName' in result:
 birth_name = result['birthName']['value']
 records.append((character_id, group_id, name, group, birth_name, alt_names))

frame = pd.DataFrame.from_records(records, columns=['character_id', 'group_id', 'name', 'group', 'birth_name', 'alt_names'])

[4]:

frame.head()

[4]:

 Tutorial

Tutorial

[1]:

import os
import sys
import pandas as pd
import json
import matplotlib.pyplot as plt
import networkx as nx
import fornax

%matplotlib inline
from IPython.core.display import SVG

Add project root dir
ROOT_DIR = os.path.abspath("../../")
sys.path.append(ROOT_DIR)

To install the use the dependencies for this notebook:

conda env create -f environment.yml
source activate fornax_tutorial

To run this notebook from the project root:

cd docs/tutorial
jupyter-notebook

In this tutorial we will:

	Load a graph of superheros and their teams from csv files

	Search for nodes in the graph using a string similarity function

	Use fornax to search for nodes using string similarity and fuzzy graph matching

The data in this tutorial we be generated using the preceding notebook: Tutorial1.ipynb.

Introduction

nodes.csv and edges.csv contain a graph of superheros and their teams along with alternative names for those heros and groups (or aliases).

The image below uses the example of Iron Man, who is known as “Tony” to his friends. Iron man is a member of the Avengers, a.k.a. Earth’s Mightiest Superheros. Other heros are also members of The Avengers, and they will also have aliases. Other heros will also be members of other teams and so and so forth.

All of these heros, teams and aliases together make our target graph, a graph which we will search using fornax.

[2]:

SVG('../img/iron_man.svg')

[2]:

[image: ../_images/tutorial_tutorial2_4_0.svg]

Let’s load the data into the notebook using pandas.

[3]:

used for converting csv values in nodes.csv
mapping = {
 '0': 'hero',
 '1': 'team',
 '2': 'hero_alias',
 '3': 'team_alias'
}

nodes_df = pd.read_csv(
 './nodes.csv',
 # rename the columns as targets as this will form the target graph
 # (the graph which we will be searching)
 names=['target_label', 'target_type', 'target_id'],
 # ignore the header
 header=0,
 converters = {
 # convert target_type from numeric values to
 # literal string representations for ease of reading
 'target_type': lambda key: mapping.get(key)
 }
)

contains pairs of target node ids
edges_df = pd.read_csv('./edges.csv')

We can see that the target nodes have a label (the hero’s primary name). The target_type column will be one of hero, team, hero alias, team alias, the four types of nodes in the graph.

(Note that by hero we mean a person in a comic book who has superpowers regardless of them being good or bad)

[4]:

nodes_df['target_label'].head()

[4]:

0 Selene
1 Doctor Doom
2 Viper
3 Sin
4 David North
Name: target_label, dtype: object

Edges are pairs of target_id values. Note that fornax deals with undirected graphs so there is no need to add the edge in the reverse direction. Doing so will cause an exception as the edge will be considered a duplicate.

[5]:

edges_df.head()

[5]:

 API

API

Introduction

This part of the documentation covers the the interface for creating an searching graphs using the fornax package.
For the full documentation of the module api see fornax.api module.

All of the functionality in fornax can be accessed via the follwoing three classes.

	Connection

	GraphHandle

	QueryHandle

Connection is used to manage a connection to a SQL database.
GraphHandle and QueryHandle are used to create, insert
update and delete graphs and queries.

Connection API

Fornax stores and queries graphs using a database via a database connection.
Connection manages the lifecycle of this database connection,
the creation of database schema (if required)
and any cleanup once the connection is closed.

	
class fornax.api.Connection(url, **kwargs)

	Create a new database connection.
If the database is empty Connection will create
any missing schema.

Currrently sqlite and postgresql are activly supported
as backend databases.

In addition to the open/close syntax, Connection
supports the context manager syntax where the context
is treaded as a transaction.
Any changes will be automatically rolled back
in the event of an exception:

with Connection("postgres:://user/0.0.0.0./mydb") as conn:
 graph = fornax.GraphHandle.create(conn)

	Parameters

	url (str) – dialect[+driver]://user:password@host/dbname[?key=value..]

	
close()

	Close the fornax database connection
and free any connections in the connection pool

	
open()

	Open the fornax database connection
and create any absent tables and indicies

Graph API

Since Graphs are persisted in a database they are not represented
directly by any object.
Rather, graphs are accessed via a graph handle which permits the user
to manipulate graphs via a Connection instance.

	
class fornax.api.GraphHandle(connection: fornax.api.Connection, graph_id: int)

	Create a handle to an existing graph with id graph_id
accessed via connection.

	Parameters

	
	connection (Connection) – fornax database connection

	graph_id (int) – unique id for an existing graph

	
add_edges(sources: Iterable, targets: Iterable, **kwargs)

	Append edges to a graph representing relationships between nodes

	Parameters

	
	sources (typing.Iterable) – node id_src

	targets (typing.Iterable) – node id_src

Keyword arguments can be used to attach metadata to the edges.
For example to add three edges with a relationship attribute friend or
foe:

graph_handle.add_edges(
 sources=[0, 1, 2],
 targets=[1, 2, 0],
 relationship=['friend', 'friend', 'foe']
)

Keyword arguments can be used to attach any arbitrary JSON
serialisable data to edges.

Note

The following reserved keywords are not reserved and will raise
an exception

	start

	end

	type

	weight

	
add_nodes(**kwargs)

	Append nodes to a graph

	Parameters

	id_src (Iterable) – An iterable of unique hashable identifiers, default None

Keyword arguments can be used to attached arbitrary JSON serialised
metadata to each node:

create 3 nodes with ids: 0, 1, 2
and names 'Anne', 'Ben', 'Charles'
graph_handle.add_nodes(names=['Anne', 'Ben', 'Charles'])

By default, each node will be assigned a sequential integer id
starting from 0. A custom id can be assigned using the id_src
keyword provided that all of the ids are hashable:

create 3 nodes with ids: 'Anne', 'Ben', 'Charles'
and no explicit name field
graph_handle.add_nodes(id_src=['Anne', 'Ben', 'Charles'])

Note

id is a reserved keyword argument which will raise an exception

	
classmethod create(connection: fornax.api.Connection)

	Create a new empty graph via connection and return a GraphHandle to it

	Parameters

	connection (Connection) – a fornax database connection

	Returns

	GraphHandle to a new graph

	Return type

	GraphHandle

	
delete()

	Delete this graph.

Delete the graph accessed through graph handle and
all of the associated nodes and edges.

	
graph_id

	Get the unique id for this graph

Graph id’s are automaticly assigned at creation time.

	
classmethod read(connection: fornax.api.Connection, graph_id: int)

	Create a new GraphHandle to an existing graph
with unique identifier graph_id

	Parameters

	
	connection (Connection) – a fornax database connection

	graph_id (int) – unique identifier for an existing graph

	Returns

	A new graph handle to an existing graph

	Return type

	GraphHandle

Query API

Like Graphs, queries exist in a database and a accessed via a handle.
Queries are executed using the QueryHandle.execute() method.

A query brings together three important concenpts.

A target graph is the graph which is going to be searched.

A query graph is the subgraph that is being seached for in the target graph.

matches are label similarities between nodes in the query graph and target graph
with a weight where \(0 \lt weight \lt= 1\).
Users are free to caculate label similarity scores however they like.
Fornax only needs to know about non zero weights between matches.

Once a query has been created and executed it will return the n subgraphs in the
target graph which are most similar to the query graph based on the similarity score
between nodes and their surrounding neighbourhoods.

Note

Nodes in the target graph will only be returned from a query if they have a
non zero similarity score to at least one node in the query graph.

	
class fornax.api.QueryHandle(connection: fornax.api.Connection, query_id: int)

	Create a handle to an existing query via connection with unique id
query_id.

	Parameters

	
	connection (Connection) – a fornax database connection

	query_id (int) – unique id for an existing query

	
add_matches(sources: Iterable[int], targets: Iterable[int], weights: Iterable[float], **kwargs)

	Add matches between the query graph and the target graph

	Parameters

	
	sources (typing.Iterable[int]) – Iterable of src_id in the query graph

	targets (typing.Iterable[int]) – Iterable of src_id in the target graph

	weights (typing.Iterable[float]) – Iterable of weights between 0 and 1

For example, to add matches between

	node 0 in the query graph and node 0 in the target graph with weight .9

	node 0 in the query graph and node 1 in the target graph with weight .1

then:

query.add_matches([0, 0], [0, 1], [.9, .1])

Note

Adding weights that compare equal to zero will raise an exception.

	
classmethod create(connection: fornax.api.Connection, query_graph: fornax.api.GraphHandle, target_graph: fornax.api.GraphHandle)

	Create a new query and return a QueryHandle for it

	Parameters

	
	connection (Connection) – a fornax database connection

	query_graph (GraphHandle) – subgraph to find target graph

	target_graph (GraphHandle) – Graph to be searched

	Returns

	new QueryHandle

	Return type

	QueryHandle

	
delete()

	Delete this query and any associated matches

	
execute(n=5, hopping_distance=2, max_iters=10)

	Execute a fuzzy subgraph matching query finding the top n subgraph
matches between the query graph and the target graph.

	Parameters

	
	n (int, optional) – number of subgraph matches to return

	hopping_distance (int, optional) – lengthscale hyperparameter, defaults to 2

	max_iters (int, optional) – maximum number of optimisation iterations

	Returns

	query result

	Return type

	dict

	
query_graph() → fornax.api.GraphHandle

	Get a QueryHandle for the query graph

	Returns

	query graph

	Return type

	GraphHandle

	
classmethod read(connection: fornax.api.Connection, query_id: int)

	Create a new QueryHandle to an existing query with unique id query_id
via connection.

	Parameters

	
	connection (Connection) – a fornax database connection

	query_id (int) – unique identifier for a query

	Returns

	new QueryHandle

	Return type

	QueryHandle

	
target_graph() → fornax.api.GraphHandle

	Get a QueryHandle for the target graph

	Returns

	target graph

	Return type

	GraphHandle

 Modules

Modules

	Submodules
	fornax.api module

	fornax.model module

	fornax.opt module

	fornax.select module

	Module contents

 Submodules

Submodules

fornax.api module

	
class fornax.api.Connection(url, **kwargs)

	Bases: object

Create a new database connection.
If the database is empty Connection will create
any missing schema.

Currrently sqlite and postgresql are activly supported
as backend databases.

In addition to the open/close syntax, Connection
supports the context manager syntax where the context
is treaded as a transaction.
Any changes will be automatically rolled back
in the event of an exception:

with Connection("postgres:://user/0.0.0.0./mydb") as conn:
 graph = fornax.GraphHandle.create(conn)

	Parameters

	url (str) – dialect[+driver]://user:password@host/dbname[?key=value..]

	
SQLITE_MAX_SIZE = 9223372036854775807

	

	
close()

	Close the fornax database connection
and free any connections in the connection pool

	
open()

	Open the fornax database connection
and create any absent tables and indicies

	
class fornax.api.Edge(start: int, end: int, edge_type: str, meta: dict, weight=1.0)

	Bases: object

Representation of an Edge used internally be QueryHandle

	Parameters

	
	start (int) – id of start node

	end (int) – id of end node

	edge_type (str) – either query target or match

	meta (dict) – dictionary of edge metadata to be json serialised

	weight – weight between 0 and 1, defaults to 1.

	Raises

	ValueError – Raised if type is not query, target or match

	
end

	

	
meta

	

	
start

	

	
type

	

	
weight

	

	
class fornax.api.GraphHandle(connection: fornax.api.Connection, graph_id: int)

	Bases: object

Create a handle to an existing graph with id graph_id
accessed via connection.

	Parameters

	
	connection (Connection) – fornax database connection

	graph_id (int) – unique id for an existing graph

	
add_edges(sources: Iterable, targets: Iterable, **kwargs)

	Append edges to a graph representing relationships between nodes

	Parameters

	
	sources (typing.Iterable) – node id_src

	targets (typing.Iterable) – node id_src

Keyword arguments can be used to attach metadata to the edges.
For example to add three edges with a relationship attribute friend or
foe:

graph_handle.add_edges(
 sources=[0, 1, 2],
 targets=[1, 2, 0],
 relationship=['friend', 'friend', 'foe']
)

Keyword arguments can be used to attach any arbitrary JSON
serialisable data to edges.

Note

The following reserved keywords are not reserved and will raise
an exception

	start

	end

	type

	weight

	
add_nodes(**kwargs)

	Append nodes to a graph

	Parameters

	id_src (Iterable) – An iterable of unique hashable identifiers, default None

Keyword arguments can be used to attached arbitrary JSON serialised
metadata to each node:

create 3 nodes with ids: 0, 1, 2
and names 'Anne', 'Ben', 'Charles'
graph_handle.add_nodes(names=['Anne', 'Ben', 'Charles'])

By default, each node will be assigned a sequential integer id
starting from 0. A custom id can be assigned using the id_src
keyword provided that all of the ids are hashable:

create 3 nodes with ids: 'Anne', 'Ben', 'Charles'
and no explicit name field
graph_handle.add_nodes(id_src=['Anne', 'Ben', 'Charles'])

Note

id is a reserved keyword argument which will raise an exception

	
classmethod create(connection: fornax.api.Connection)

	Create a new empty graph via connection and return a GraphHandle to it

	Parameters

	connection (Connection) – a fornax database connection

	Returns

	GraphHandle to a new graph

	Return type

	GraphHandle

	
delete()

	Delete this graph.

Delete the graph accessed through graph handle and
all of the associated nodes and edges.

	
graph_id

	Get the unique id for this graph

Graph id’s are automaticly assigned at creation time.

	
classmethod read(connection: fornax.api.Connection, graph_id: int)

	Create a new GraphHandle to an existing graph
with unique identifier graph_id

	Parameters

	
	connection (Connection) – a fornax database connection

	graph_id (int) – unique identifier for an existing graph

	Returns

	A new graph handle to an existing graph

	Return type

	GraphHandle

	
exception fornax.api.InvalidEdgeError(message: str)

	Bases: Exception

	
exception fornax.api.InvalidMatchError(message: str)

	Bases: Exception

	
exception fornax.api.InvalidNodeError(message: str)

	Bases: Exception

	
class fornax.api.Node(node_id: int, node_type: str, meta: dict)

	Bases: object

Representation of a Node use internally by QueryHandle

	Parameters

	
	node_id (int) – unique id of a node

	node_type (str) – either source or target

	meta (dict) – meta data to attach to a node to be json serialised

	Raises

	ValueError – Raised is type is not either source or target

	
id

	

	
meta

	

	
type

	

	
class fornax.api.NullValue

	Bases: object

A dummy nul value that will cause an exception when serialised to json

	
class fornax.api.QueryHandle(connection: fornax.api.Connection, query_id: int)

	Bases: object

Create a handle to an existing query via connection with unique id
query_id.

	Parameters

	
	connection (Connection) – a fornax database connection

	query_id (int) – unique id for an existing query

	
add_matches(sources: Iterable[int], targets: Iterable[int], weights: Iterable[float], **kwargs)

	Add matches between the query graph and the target graph

	Parameters

	
	sources (typing.Iterable[int]) – Iterable of src_id in the query graph

	targets (typing.Iterable[int]) – Iterable of src_id in the target graph

	weights (typing.Iterable[float]) – Iterable of weights between 0 and 1

For example, to add matches between

	node 0 in the query graph and node 0 in the target graph with weight .9

	node 0 in the query graph and node 1 in the target graph with weight .1

then:

query.add_matches([0, 0], [0, 1], [.9, .1])

Note

Adding weights that compare equal to zero will raise an exception.

	
classmethod create(connection: fornax.api.Connection, query_graph: fornax.api.GraphHandle, target_graph: fornax.api.GraphHandle)

	Create a new query and return a QueryHandle for it

	Parameters

	
	connection (Connection) – a fornax database connection

	query_graph (GraphHandle) – subgraph to find target graph

	target_graph (GraphHandle) – Graph to be searched

	Returns

	new QueryHandle

	Return type

	QueryHandle

	
delete()

	Delete this query and any associated matches

	
execute(n=5, hopping_distance=2, max_iters=10)

	Execute a fuzzy subgraph matching query finding the top n subgraph
matches between the query graph and the target graph.

	Parameters

	
	n (int, optional) – number of subgraph matches to return

	hopping_distance (int, optional) – lengthscale hyperparameter, defaults to 2

	max_iters (int, optional) – maximum number of optimisation iterations

	Returns

	query result

	Return type

	dict

	
static is_between(target_ids, edge)

	

	
query_graph() → fornax.api.GraphHandle

	Get a QueryHandle for the query graph

	Returns

	query graph

	Return type

	GraphHandle

	
classmethod read(connection: fornax.api.Connection, query_id: int)

	Create a new QueryHandle to an existing query with unique id query_id
via connection.

	Parameters

	
	connection (Connection) – a fornax database connection

	query_id (int) – unique identifier for a query

	Returns

	new QueryHandle

	Return type

	QueryHandle

	
target_graph() → fornax.api.GraphHandle

	Get a QueryHandle for the target graph

	Returns

	target graph

	Return type

	GraphHandle

fornax.model module

	
class fornax.model.Edge(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

Joins Nodes in a Graph

	
end

	

	
end_node

	

	
graph_id

	

	
meta

	

	
start

	

	
start_node

	

	
class fornax.model.Graph(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

A graph containing nodes and edges

	
graph_id

	

	
class fornax.model.Match(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

Joins Query Nodes to Candidate Target Nodes

	
end

	

	
end_graph_id

	

	
end_node

	

	
meta

	

	
query_id

	

	
start

	

	
start_graph_id

	

	
start_node

	

	
weight

	

	
class fornax.model.Node(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

Node in a Graph

	
graph_id

	

	
meta

	

	
neighbours()

	

	
node_id

	

	
class fornax.model.Query(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	
end_graph_id

	

	
query_id

	

	
start_graph_id

	

fornax.opt module

	
class fornax.opt.Base

	Bases: numpy.recarray

A Base class for subclassing numpy record arrays

	Returns:

	np.recarray – A subclass of np.recarray

	
columns = []

	

	
types = []

	

	
class fornax.opt.InferenceCost

	Bases: fornax.opt.Base

A table representing all valid inference costs between query node
u and target node v

	
columns = ['v', 'u', 'cost']

	

	
cost

	Get column cost - all valid inference costs for
query node v and target node u.

Eq 14 in the paper (U)

	Returns:

	np.ndarray – array of costs as floats

	
types = [<class 'numpy.int64'>, <class 'numpy.int64'>, <class 'numpy.float32'>]

	

	
u

	Get column u

	Returns:

	np.ndarray – array of target node ids as integers

	
v

	Get column v

	Returns:

	np.ndarray – array of query node ids as integers

	
class fornax.opt.NeighbourHoodMatchingCosts

	Bases: fornax.opt.Base

Represents a table of all valid neighbourhood matching costs

	
columns = ['v', 'u', 'vv', 'uu', 'cost']

	

	
cost

	Get column cost - all valid neighbourhood matching costs.

Eq 2 in the paper - multiplied by 1 - lambda

	Returns:

	np.ndarray – array of costs and floats

	
types = [<class 'numpy.int64'>, <class 'numpy.int64'>, <class 'numpy.int64'>, <class 'numpy.int64'>, <class 'numpy.float32'>]

	

	
u

	Get column u

	Returns:

	np.ndarray – array of target node ids as integers

	
uu

	Get column uu - written u prime (u’) in the paper
where u’ is a target node within
hopping distance h of target node u

	Returns:

	np.ndarray – array of target node ids as integers

	
v

	Get column v

	Returns:

	np.ndarray – array of query node ids as integers

	
vv

	Get column vv - written v prime (v’) in the paper
where v’ is a query node within
hopping distance h of query node v

	Returns:

	np.ndarray – array of query node ids as integers

	
class fornax.opt.OptimalMatch

	Bases: fornax.opt.Base

Table representing the cost of the optimal
match for query node v going to u

	
columns = ['v', 'u', 'cost']

	

	
cost

	Get column cost - the optimal matching cost for u going to v.

Eq 10 in the paper (O)

	Returns:

	np.ndarray – array of costs as floats

	
types = [<class 'numpy.int64'>, <class 'numpy.int64'>, <class 'numpy.float32'>]

	

	
u

	Get column u

	Returns:

	np.ndarray – array of target node ids as integers

	
v

	Get column v

	Returns:

	np.ndarray – array of query node ids as integers

	
class fornax.opt.PartialMatchingCosts

	Bases: fornax.opt.Base

A table representing all valid partial matching costs

	
columns = ['v', 'u', 'vv', 'cost']

	

	
cost

	Get column cost - all valid partial matching costs.

Eq 13 in the paper (W) - but with beta multiplied by
a factor of 1 - lambda

	Returns:

	np.ndarray – array of costs as floats

	
types = [<class 'numpy.int64'>, <class 'numpy.int64'>, <class 'numpy.int64'>, <class 'numpy.float32'>]

	

	
u

	Get column u

	Returns:

	np.ndarray – array of target node ids as integers

	
v

	Get column v

	Returns:

	np.ndarray – array of query node ids as integers

	
vv

	Get column vv - written v prime (v’) in the paper
where v’ is a query node within
hopping distance h of query node v

	Returns:

	np.ndarray – array of query node ids as integers

	
class fornax.opt.QueryResult

	Bases: fornax.opt.Base

Represents a query from the database as a numpy rec array

	
columns = ['v', 'u', 'vv', 'uu', 'dist_v', 'dist_u', 'weight']

	

	
dist_u

	The hopping distance between target node u and target node uu (u’)

	Returns:

	np.ndarray – array of hopping distances as integers

	
dist_v

	The hopping distance between query node v and query node vv (v’)

	Returns:

	np.ndarray – array of hopping distances as integers

	
types = [<class 'numpy.int64'>, <class 'numpy.int64'>, <class 'numpy.int64'>, <class 'numpy.int64'>, <class 'numpy.float32'>, <class 'numpy.float32'>, <class 'numpy.float32'>]

	

	
u

	Get column u

	Returns:

	np.ndarray – array of target node ids as integers

	
uu

	Get column uu - written u prime (u’) in the paper
where u’ is a target node within
hopping distance h of target node u

values less than zero indicate that uu (u’) has
no corresponding matches to any node v’

	Returns:

	np.ndarray – array of target node ids as integers

	
v

	Get column v

	Returns:

	np.ndarray – array of query node ids as integers

	
vv

	Get column vv - written v prime (v’) in the paper
where v’ is a query node within
hopping distance h of query node v

	Returns:

	np.ndarray – array of query node ids as integers

	
weight

	String matching score between uu (u’) and vv (v’)

	Returns:

	np.ndarray – array of floating point weights

	
class fornax.opt.Refiner(neighbourhood_matching_costs: fornax.opt.NeighbourHoodMatchingCosts)

	Bases: object

Take each of the matches and recursivly find
all of their neighbours via a greedy algorithm

	
static valid_neighbours(first: tuple, second: tuple)

	Function that governs a valid hop between nodes

	Arguments:

	first {int, int} – source query_node, target_node id pair
second {int, int} – target query_node, target_node id pair

	Returns:

	Bool – True is a valid transition

	
fornax.opt.group_by(columns, arr)

	Split an array into n slices where ‘columns’
are all equal within each slice

	Arguments:

	columns {List[str]} – a list of column names
arr {np.array} – a numpy structured array

	Returns

	keys: np.array – the column values uniquly identifying each group
groups: List[np.array] – a list of numpy arrays

	
fornax.opt.group_by_first(columns, arr)

	Split an array into n slices where ‘columns’
all compare equal within each slide
Take the first row of each slice
Combine each of the rows into a single array through concatination

	Arguments:

	columns {[str]} – a list of column names
arr {[type]} – a numpy structured array

	Returns:

	np.array - new concatinated array

	
fornax.opt.solve(records: List[tuple], max_iters=10, hopping_distance=2)

	Generate a set of subgraph matches and costs from a query result

	Arguments:

	records {List[tuple]}

fornax.select module

	
fornax.select.join(query_id: int, h: int, offsets: Tuple[int, int] = None) → sqlalchemy.orm.query.Query

	

	
fornax.select.neighbours(h: int, start: bool, query_id: int) → sqlalchemy.orm.query.Query

	

Module contents

 Python Module Index

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fornax	

 	
 	
 fornax.api	

 	
 	
 fornax.model	

 	
 	
 fornax.opt	

 	
 	
 fornax.select	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add_edges() (fornax.api.GraphHandle method)

 	
 	add_matches() (fornax.api.QueryHandle method)

 	add_nodes() (fornax.api.GraphHandle method)

B

 	
 	Base (class in fornax.opt)

C

 	
 	close() (fornax.api.Connection method)

 	columns (fornax.opt.Base attribute)

 	(fornax.opt.InferenceCost attribute)

 	(fornax.opt.NeighbourHoodMatchingCosts attribute)

 	(fornax.opt.OptimalMatch attribute)

 	(fornax.opt.PartialMatchingCosts attribute)

 	(fornax.opt.QueryResult attribute)

 	
 	Connection (class in fornax.api)

 	cost (fornax.opt.InferenceCost attribute)

 	(fornax.opt.NeighbourHoodMatchingCosts attribute)

 	(fornax.opt.OptimalMatch attribute)

 	(fornax.opt.PartialMatchingCosts attribute)

 	create() (fornax.api.GraphHandle class method)

 	(fornax.api.QueryHandle class method)

D

 	
 	delete() (fornax.api.GraphHandle method)

 	(fornax.api.QueryHandle method)

 	
 	dist_u (fornax.opt.QueryResult attribute)

 	dist_v (fornax.opt.QueryResult attribute)

E

 	
 	Edge (class in fornax.api)

 	(class in fornax.model)

 	end (fornax.api.Edge attribute)

 	(fornax.model.Edge attribute)

 	(fornax.model.Match attribute)

 	
 	end_graph_id (fornax.model.Match attribute)

 	(fornax.model.Query attribute)

 	end_node (fornax.model.Edge attribute)

 	(fornax.model.Match attribute)

 	execute() (fornax.api.QueryHandle method)

F

 	
 	fornax (module)

 	fornax.api (module), [1]

 	
 	fornax.model (module)

 	fornax.opt (module)

 	fornax.select (module)

G

 	
 	Graph (class in fornax.model)

 	graph_id (fornax.api.GraphHandle attribute)

 	(fornax.model.Edge attribute)

 	(fornax.model.Graph attribute)

 	(fornax.model.Node attribute)

 	
 	GraphHandle (class in fornax.api)

 	group_by() (in module fornax.opt)

 	group_by_first() (in module fornax.opt)

I

 	
 	id (fornax.api.Node attribute)

 	InferenceCost (class in fornax.opt)

 	InvalidEdgeError

 	
 	InvalidMatchError

 	InvalidNodeError

 	is_between() (fornax.api.QueryHandle static method)

J

 	
 	join() (in module fornax.select)

M

 	
 	Match (class in fornax.model)

 	meta (fornax.api.Edge attribute)

 	(fornax.api.Node attribute)

 	(fornax.model.Edge attribute)

 	(fornax.model.Match attribute)

 	(fornax.model.Node attribute)

N

 	
 	NeighbourHoodMatchingCosts (class in fornax.opt)

 	neighbours() (fornax.model.Node method)

 	(in module fornax.select)

 	
 	Node (class in fornax.api)

 	(class in fornax.model)

 	node_id (fornax.model.Node attribute)

 	NullValue (class in fornax.api)

O

 	
 	open() (fornax.api.Connection method)

 	
 	OptimalMatch (class in fornax.opt)

P

 	
 	PartialMatchingCosts (class in fornax.opt)

Q

 	
 	Query (class in fornax.model)

 	query_graph() (fornax.api.QueryHandle method)

 	query_id (fornax.model.Match attribute)

 	(fornax.model.Query attribute)

 	
 	QueryHandle (class in fornax.api)

 	QueryResult (class in fornax.opt)

R

 	
 	read() (fornax.api.GraphHandle class method)

 	(fornax.api.QueryHandle class method)

 	
 	Refiner (class in fornax.opt)

S

 	
 	solve() (in module fornax.opt)

 	SQLITE_MAX_SIZE (fornax.api.Connection attribute)

 	start (fornax.api.Edge attribute)

 	(fornax.model.Edge attribute)

 	(fornax.model.Match attribute)

 	
 	start_graph_id (fornax.model.Match attribute)

 	(fornax.model.Query attribute)

 	start_node (fornax.model.Edge attribute)

 	(fornax.model.Match attribute)

T

 	
 	target_graph() (fornax.api.QueryHandle method)

 	type (fornax.api.Edge attribute)

 	(fornax.api.Node attribute)

 	types (fornax.opt.Base attribute)

 	(fornax.opt.InferenceCost attribute)

 	(fornax.opt.NeighbourHoodMatchingCosts attribute)

 	(fornax.opt.OptimalMatch attribute)

 	(fornax.opt.PartialMatchingCosts attribute)

 	(fornax.opt.QueryResult attribute)

U

 	
 	u (fornax.opt.InferenceCost attribute)

 	(fornax.opt.NeighbourHoodMatchingCosts attribute)

 	(fornax.opt.OptimalMatch attribute)

 	(fornax.opt.PartialMatchingCosts attribute)

 	(fornax.opt.QueryResult attribute)

 	
 	uu (fornax.opt.NeighbourHoodMatchingCosts attribute)

 	(fornax.opt.QueryResult attribute)

V

 	
 	v (fornax.opt.InferenceCost attribute)

 	(fornax.opt.NeighbourHoodMatchingCosts attribute)

 	(fornax.opt.OptimalMatch attribute)

 	(fornax.opt.PartialMatchingCosts attribute)

 	(fornax.opt.QueryResult attribute)

 	
 	valid_neighbours() (fornax.opt.Refiner static method)

 	vv (fornax.opt.NeighbourHoodMatchingCosts attribute)

 	(fornax.opt.PartialMatchingCosts attribute)

 	(fornax.opt.QueryResult attribute)

W

 	
 	weight (fornax.api.Edge attribute)

 	(fornax.model.Match attribute)

 	(fornax.opt.QueryResult attribute)

_images/tutorial_tutorial2_34_3.png
Result 4, score: 071

seibora
P

s
.
y

Guardlan’/he Galaxy’

/

@

_images/tutorial_tutorial2_36_1.png
Result 5, score: 0.46

Gudidian

-
)
s

-

@ Q-

_images/tutorial_tutorial2_34_1.png
Result 2, score: 0.72

5@
Guardians(ofthe Saflians L
& -

_images/tutorial_tutorial2_34_2.png
Result 3, score: 0.71
stdrbord
N
e
e

\
uarsansie gy,

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_images/fornax.png
Specify Graphs Label Distances Compare

‘Submit undirected labelled graph to Submit label similarity metrics between nodes in difierent Find the top n subgraphs in graph b
fomax, araphs. that most resemble graph a.

®

og

O/ Fornax

_images/subgraph.png

_images/tutorial_tutorial2_32_1.png
Result 1, score: 0.76

@ sl

PR

-
-
Guardians(ofthe Galaxy

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to fornax’s documentation!

 		
 Guide

 		
 Subgraph Matching

 		
 Example Problems

 		
 Goals

 		
 Architecture

 		
 Creating a Dataset

 		
 Download

 		
 SPARQL

 		
 Loading with Pandas

 		
 Splitting into Tables

 		
 Analysis

 		
 Export to CSV

 		
 Tutorial

 		
 Introduction

 		
 Label similarity

 		
 Aside:

 		
 Creating a target graph

 		
 Creating a query graph

 		
 Search

 		
 Visualise

 		
 API

 		
 Introduction

 		
 Connection API

 		
 Graph API

 		
 Query API

 		
 Modules

 		
 Submodules

 		
 fornax.api module

 		
 fornax.model module

 		
 fornax.opt module

 		
 fornax.select module

 		
 Module contents

_static/file.png

_static/logo.